Groups of homeomorphisms and diffeomorphisms of non-compact manifolds with the Whitney topology

Taras Banakh (Ivan Franko National University of Lviv, Ukraine)
Kotaro Mine (University of Tokyo, Japan)
Katsuro Sakai (Kanagawa University, Japan)
Tatsuhiko Yagasaki (Kyoto Institute of Technology, Japan)

ICM Seoul, 2014
Short Communications in Topology Session
Aug. 16, 2014
§1. Model spaces for Whitney Topology

Compact-Open Topology \leftrightarrow \text{Tychonoff Products / Weak Products of } l_2

Whitney Topology \leftrightarrow \text{Box Products / Small Box Products of } l_2

Definition. \quad \omega = \{0, 1, 2, \ldots\}

(1) The (Countable) Box product of Top space \(X \) : \(\Box^\omega X \)
- the usual countable product \(\prod_{n \in \omega} X \) as a Set
- is given Box Topology

This topology is generated by \(\prod_n U_n \) \((U_n \subset X : \text{Open subset})\)

(2) The Small box product of Pointed Space \((X, \ast)\) : \(\Box^\omega X \)
- Subspace of \(\Box^\omega X \) consisting of finite seq’s \((x_0, x_1, \ldots, x_i, \ast, \ast, \ldots)\)

(1) \(\Box^\omega l_2 \) : a bad space (not normal, not locally connected, etc.)

(2) Top. Classification of LF spaces \quad (P. Mankiewicz, 1974)
\[\Box^\omega \mathbb{R} \approx \mathbb{R}^\infty \equiv \text{dir lim } \{\mathbb{R}^1 \subset \mathbb{R}^2 \subset \mathbb{R}^3 \subset \cdots\} \]
\[\Box^\omega l_2 \approx l_2 \times \mathbb{R}^\infty \]
§2. Homeomorphism Groups with Whitney topology

\(M \) : Non-compact \(n \)-manifold (possibly with boundary)

\(\mathcal{H}(M) \) : Homeo Group of \(M \) (Whitney topology) — Top group

\(* \quad \mathcal{O}(h, \mathcal{U}) := \{ g \in \mathcal{H}(M) \mid g: \mathcal{U}\text{-close to } h \} \quad (h \in \mathcal{H}(M), \ \mathcal{U} \in \text{cov}(M)) \)

\(\mathcal{H}_0(M) \) : the identity connected component of \(\mathcal{H}(M) \)

\(\mathcal{H}_c(M) \subset \mathcal{H}(M) \) : Subgroup of Homeo’s with compact support

Basic Property. (BMSY, 2011)

(1) \(\mathcal{H}_c(M) \) : Paracompact, Locally contractible

(2) \(\mathcal{H}_0(M) \subset \mathcal{H}_c(M) \) : Open normal subgroup

(3) \(\mathcal{M}_c(M) = \mathcal{H}_c(M)/\mathcal{H}_0(M) \) : Mapping Class Group (Discrete Top)

\[\mathcal{H}_c(M) \cong \mathcal{H}_{0}(M) \times \mathcal{M}_c(M) \quad \text{(as Top spaces)} \]

(4) \((M_i)_{i \in \mathbb{N}} \) : Compact subsets of \(M \) s.t. \(M_i \subset \text{Int}_M M_{i+1}, \ M = \bigcup_i M_i \)

\[G(M_i) := \{ h \in \mathcal{H}_c(M) \mid \text{supp } h \subset M_i \} \]

\[\mathcal{H}_c(M) = \varprojlim_i G(M_i) \quad \text{(Direct limit in Category of Top Groups)} \]
Topological Type

1-dim case \((\mathcal{H}(\mathbb{R}), \mathcal{H}_c(\mathbb{R})) \approx (\Box^\omega l_2, \Box^\omega l_2)\) (BMS, 2009)

2-dim case

\(M\) : Non-compact Connected 2-manifold (possibly with boundary)

Thm 1. \((\mathcal{H}(M), \mathcal{H}_c(M)) \approx_\ell (\Box^\omega l_2, \Box^\omega l_2)\) (BMS, 2011)

Thm 2. (1) \(\mathcal{H}_0(M) \approx \Box^\omega l_2 \approx l_2 \times \mathbb{R}^{\infty}\) (BMSY, 2014)

(2) \(\mathcal{H}_c(M) \approx \mathcal{H}_0(M) \times \mathcal{M}_c(M)\) \((\mathcal{M}_c(M) : \text{discrete})\)

\(\mathcal{M}_c(M) \approx \text{homeo} \left\{ \begin{array}{ll} \text{1pt} & M = X - K : (\ast) \smallskip \\
\text{N} & \text{in all other cases} \end{array} \right.\)

(\ast) : \(X = \text{Annulus, Disk or Möbius band,}\)

\(K = \text{Non-empty compact subset of one boundary circle of } X\)

Remark. \(\mathcal{H}(M)_{co}\) with Compact-Open Topology (T. Yagasaki, 2000)

\((\mathcal{H}(M)_{co})_0 \approx \left\{ \begin{array}{ll} S^1 \times l_2 & \text{if } M = \mathbb{R}^2, S^1 \times \mathbb{R}, S^1 \times [0, \infty) \text{ or } M - \partial M \\
l_2 & \text{in all other cases.} \end{array} \right.\)
§3. Diffeomorphism Groups with Whitney C^∞-topology

M : Non-compact C^∞ n-manifold (without boundary)

$\mathcal{D}(M)$: Diffeo Group of M (Whitney C^∞-topology) — Top group

$\mathcal{D}_0(M)$: the identity connected component of $\mathcal{D}(M)$

$\mathcal{D}_c(M) \subset \mathcal{D}(M)$: Subgroup of Diffeo’s with compact support

Basic Property. (BMSY, 2011)

(1) $\mathcal{D}_c(M)$: Paracompact

(2) $\mathcal{D}_0(M) \subset \mathcal{D}_c(M)$: Open normal subgroup

(3) $\mathcal{M}_c^\infty(M) = \mathcal{D}_c(M)/\mathcal{D}_0(M)$: Mapping Class Group (Discrete Top)

\[\mathcal{D}_c(M) \cong \mathcal{D}_0(M) \times \mathcal{M}_c^\infty(M) \] (as Top spaces)

homeo

(4) $(M_i)_{i \in \mathbb{N}}$: Compact subsets of M s.t. $M_i \subset \text{Int}_MM_{i+1}$, $M = \bigcup_i M_i$

$G(M_i) := \{ h \in \mathcal{D}_c(M) \mid \text{supp } h \subset M_i \}$

$\mathcal{D}_c(M) = \underset{i}{\text{g-lim}} \ G(M_i)$ (Direct limit in Category of Top Groups)
Topological Type

1-dim case \((\mathcal{D}(\mathbb{R}), \mathcal{D}_c(\mathbb{R})) \approx (\Box^{\omega}_2, \Box^{\omega}_2)\) (BY, 2010)

n-dim case

\(M\) : Non-compact Connected \(C^\infty\) \(n\)-manifold (without boundary)

Thm 1. \((\mathcal{D}(M), \mathcal{D}_c(M)) \approx_\ell (\Box^{\omega}_2, \Box^{\omega}_2)\) (BMSY, 2011)

Thm 2. \(\mathcal{D}_c(M) \approx\) Open subset of \(l_2 \times \mathbb{R}^\infty\) (BY)

\(\mathcal{D}_0(M) \approx L \times \mathbb{R}^\infty\) for some top. \(l_2\)-manifold \(L\) \(\ (L \simeq \mathcal{D}_0(M))\)

(1) \(\mathcal{D}_0(M) \approx l_2 \times \mathbb{R}^\infty\) if \(n = 1, 2\) or

\(n = 3\) and \(M\) : orientable, irreducible

(2) \(\mathcal{D}_0(M) \approx \mathcal{D}_0(N; \partial N) \times \mathbb{R}^\infty\)

if \(N\) : Compact Connected \(C^\infty\) \(n\)-manifold with Boundary

\(M = \text{Int } N\)
§5. Criterion of Top Group $\approx l_2 \times \mathbb{R}^\infty$.

T. Banakh - D. Repovš (2009 -) — Series of papers

Study of Direct limit of Uniform spaces and Top. LF-manifolds
Quotients of Hilbert manifolds groups, etc.

Thm. (BMRSY, 2013)

$G :$ Top Group, Non-metrizable, $G = \cup_n G_n$

(*1) $G_n \subset G :$ Closed subgroup, $G_n \subset G_{n+1}, \ G_n \approx l_2$

(*2) $p : \sqcap_n G_n \to G :$ Open

(*3) $G_{n+1} \to G_{n+1}/G_n \text{ admits a local section}$

(*4) each Z-point of G_{n+1}/G_n is a strong Z-point.

$\implies G \approx l_2 \times \mathbb{R}^\infty$
References.

BMRSY = T. Banakh, K. Mine, D. Repovš, K. Sakai, T. Yagasaki

Thank you very much for your attention!