The uniform perfectness of diffeomorphism groups
of open manifolds

Tatsuhiko Yagasaki
(Kyoto Institute of Technology)

Joint work with

Kazuhiko Fukui
Tomasz Rybicki (AGH University of Science and Technology)

RIMS Conference
“The theory of transformation groups and its applications”

RIMS, Kyoto University
May 28, 2019
§1. Background.

Algebraic property of diffeomorphism groups

Perfectness & Simplicity: (1970’s)

[1] M. Herman, W. Thurston, J. Mather, D. B. A. Epstein:

\(M : \) a \(\sigma \)-compact (separable metrizable) \(C^\infty \) \(n \)-manifold without boundary

\(\implies \) Diff\(_r^c(M)\)\(_0\) : perfect

simple if \(M \) is connected.

\(M = \text{Int} \, W \) (\(W \) : a compact manifold with \(\partial \neq \emptyset \))

\(\implies \) Diff\(_r(M)\)\(_0\) : perfect

Uniform Perfectness, Boundedness, Uniform Simplicity: (2000’s)

Conjugation-invariant norms on diffeomorphism groups

Commutator length, Conjugation-generated norm

cld \text{Diff}^r(S^n)_0 \leq 4, \quad M: \text{a closed 3-manifold} \implies cld \text{Diff}^r(M)_0 \leq 10

T. Tsuboi \quad M: \text{a closed } n\text{-manifold} \quad (2008, 2012)

(1) \quad n = 2m + 1: \quad cld \text{Diff}^r(M)_0 \leq 4

(2) \quad n = 2m:

(i) \quad \exists \text{Handle decomp. without } m\text{-handles} \implies cld \text{Diff}^r(M)_0 \leq 3

(ii) \quad m \geq 3, \quad \exists \text{Triangulation with } \# m\text{-simplices} \leq k

\implies cld \text{Diff}^r(M)_0 \leq 4k + 11

T. Tsuboi \quad M: \text{a closed connected } n\text{-manifold} \quad (2009, 2012)

\text{Diff}^r(M)_0 : \text{uniformly simple \quad if}

(1) \quad n \neq 2, 4 \quad \text{or} \quad (2) \quad n = 2, 4 \quad \exists \text{Handle decomp. without } m\text{-handles} \quad (n = 2m)

T. Rybicki \quad (2011)

M = \text{Int } W \quad (W: \text{a compact } n\text{-manifold with } \partial \neq \emptyset)

M: \text{portable} \implies \text{Diff}^r(M)_0 : \text{bounded}
§2. Conjugation-invariant norms (BIP).

G: a group

(1) an extended conjugation-invariant norm on G

\[q : G \rightarrow [0, \infty] \text{ s.t. } \begin{align*}
(i) & \quad q(g) = 0 \text{ iff } g = e \\
(ii) & \quad q(g^{-1}) = q(g) \\
(iii) & \quad q(gh) \leq q(g) + q(h) \\
(iv) & \quad q(hgh^{-1}) = q(g)
\end{align*} \]

\(\circ \ G \supset A \leadsto qdA := \sup \{q(g) \mid g \in A\} \).

(2) a conjugation-invariant norm on G

= an extended conj.-invariant norm on G with values in $[0, \infty)$

\(\circ \ G : \text{bounded} \iff \text{any conj.-invariant norm on } G \text{ is bounded} \)

(3) $S \subset G$: symmetric, conjugation-invariant

\(G \triangleright N(S) = S^\infty \equiv \bigcup_{k=0}^\infty S^k \)

\((S = S^{-1}) \quad (gSg^{-1} = S \ (\forall g \in G))\)

\(q(G,S) : G \rightarrow \mathbb{Z}_{\geq 0} \cup \{\infty\} \text{ is defined by} \)

\[
q(G,S)(g) := \begin{cases}
\min\{k \in \mathbb{Z}_{\geq 0} \mid g = g_1 \cdots g_k \text{ for } g_1, \cdots, g_k \in S\} & (g \in N(S)) \\
\infty & (g \in G - N(S)) \).
\end{cases}
\]
[I] Conjugation-generated norm $\nu_g : G \rightarrow \mathbb{Z}_{\geq 0} \cup \{\infty\}$

(1) $g \in G$ $\quad C(g) :=$ the conjugacy class of g in G

$C_g := C(g) \cup C(g^{-1}) \subset G$: symmetric, conjugation invariant

(2) $\nu_g := q_{(G,C_g)}$ $\quad N(g) = N(C_g) = C_g^\infty$

$\circ \nu_g(f) \leq k \iff f = \text{a product of at most } k \text{ conjugates of } g \text{ or } g^{-1}$

(3) $G : \text{uniformly simple} \iff \exists k \in \mathbb{Z}_{\geq 0} \text{ s.t. } \nu_g \leq k \quad (\forall g \in G - \{e\})$

(4) ν_g is bounded for some $g \in G - \{e\} \implies G : \text{bounded}$

[II] Commutator length $cl_G : G \rightarrow \mathbb{Z}_{\geq 0} \cup \{\infty\}$

(1) $G^c = \{[a,b] \mid a, b \in G\}$: symmetric, conj.-invariant in G

$\circ [G, G] = N(G^c) = (G^c)^\infty$

$cl_G := q_{(G,G^c)}$ $\quad cld_G, cld_G A \equiv cld(A,G) \quad (A \subset G)$

$\circ cl(g) \leq k$ in $G \iff cl_G(g) \leq k$

(2) $G : \text{uniformly perfect} \iff \text{cld}_G < \infty$

i.e., $\exists k \in \mathbb{Z}_{\geq 0} \text{ s.t. } G \ni \forall g = g_1 \cdots g_k \quad (\exists g_1, \cdots, g_k \in G^c)$
Commutator length supported in n-balls in diffeomorphism groups

$clb^f, clb^d : \text{Diff}^r(M, \partial M \cup C)_0 \to \mathbb{Z}_{\geq 0} \cup \{\infty\} \quad (C \subset M : \text{a closed subset})$

(1) $\mathcal{B} = \mathcal{B}^r_f(M, C), \mathcal{B}^r_d(M, C)$

$\mathcal{B}^r_f(M, C) := \text{the collection of all finite disjoint unions } D \text{ of } C^r \text{ } n\text{-balls in } M \text{ s.t. } D \subset \text{Int } M - C$

$\mathcal{B}^r_d(M, C) := \text{the collection of all discrete unions } D \text{ of } C^r \text{ } n\text{-balls in } M \text{ s.t. } D \subset \text{Int } M - C$

(2) $G \equiv \text{Diff}^r(M, \partial M \cup C)_0$

$S := \bigcup \{\text{Diff}^r(M, M_D)_0^c \mid D \in \mathcal{B}\} \quad (M_A := M - \text{Int}_MA \quad (A \subset M))$

$S : \text{symmetric, conjugation-invariant in } G$

$clb^f, clb^d := q_{(G, S)} \quad clb^f d, \quad clb^d d$

$\circ \quad M - C : \text{relatively compact in } M$

$\implies \quad \mathcal{B}^r_f(M, C) = \mathcal{B}^r_d(M, C), \quad clb^f = clb^d \quad \text{on } G$
Relations between ν_g and clb^f, clb^d

$C(X) :=$ the set of connected components of a top. space X

Definition. $M :$ an n-manifold possibly with ∂, $g \in \text{Diff}^r(M)$

1. $g :$ component-wise non-trivial $\iff g|_U \neq \text{id}_U \quad (\forall U \in C(M))$
2. $g :$ component-wise end-non-trivial \iff
 - (i) $g :$ component-wise non-trivial
 - (ii) $g|_V \neq \text{id}_V \quad \forall (U, K, V)$ with $U \in C(M) - K(M), K \in K(U)$
 $V \in C(U - K) :$ not rel. compact

Fact. $M :$ an n-manifold possibly with ∂

1. $\nu_g \leq 4clb^f$ in $\text{Diff}^r_c(M, \partial)_0$

 if $g \in \text{Diff}^r_c(M, \partial)_0 :$ component-wise non-trivial $(C(M) :$ a finite set)$

2. $\nu_g \leq 4clb^d$ in $\text{Diff}^r(M, \partial)_0$

 if $g \in \text{Diff}^r(M, \partial)_0 :$ component-wise end-non-trivial

* Upper bound for cl, clb^f, $clb^d \implies$ Uniform Perfectness
 Boundedness
 Uniform Simplicity
§3. Main Results.

1 \leq r \leq \infty, \ r \neq n + 1

Theorem I. \(n = 2m + 1 \).

1. \(M \) : a compact \(n \)-manifold possibly with \(\partial \) \(\implies \ \cld \text{Diff}^r(M, \partial)_0 \leq 4 \)

2. \(M \) : an open \(n \)-manifold \(\implies \ \cld \text{Diff}^r(M)_0 \leq 8, \ \cld \text{Diff}^r_c(M)_0 \leq 4 \)

Theorem II. \(n = 2m \).

1. \(M \) : a compact \(n \)-manifold possibly with \(\partial, \ m \geq 3 \)

 \[\cld \text{Diff}^r(M, \partial)_0 \leq 2k + 7 \]

 if \(\exists \) Triangulation s.t. \(\# \{ m \text{-simplices not in} \ \partial M \} \leq k \)

2. \(M \) : an \(n \)-manifold without boundary

 (i) \(\cld \text{Diff}^r(M)_0 \leq 6 \) and \(\cld \text{Diff}^r_c(M)_0 \leq 3 \)

 if \(\exists \) Handle decomp. without \(m \)-handles

 (ii) \(\cld \text{Diff}^r(M)_0 \leq 2k + 10 \) and \(\cld \text{Diff}^r_c(M)_0 \leq 2k + 7 \)

 if \(m \geq 3, \ \exists \) Handle decomp. \(\mathcal{H} \) s.t. \(\# m \)-handles \(\leq k \)

 each closed \(m \)-cell of \(P_\mathcal{H} \) has \(\text{SDP} \) for \(P^{(m)}_\mathcal{H} \).

\(\circ \ \text{SDP} = \text{Strong Displacement Property} \)
Theorem III. \(\pi: \tilde{M} \to M \): a \(C^\infty \) covering space

- \(M \): a closed \(2m \)-manifold \((m \geq 3) \)
- \(\exists \) Triangulation of \(M \) s.t. \# \(m \)-simplices \(\leq k \)
- or \(\exists \) Handle decomp. \(\mathcal{H} \) of \(M \) s.t. \# \(m \)-handles \(\leq k \)

Each closed \(m \)-cell of \(P_{\mathcal{H}} \) has SDP for \(P_{\mathcal{H}}^{(m)} \)

\[\implies cld \text{ Diff}^r(\tilde{M})_0 \leq 4k + 14 \quad \text{and} \quad cld \text{ Diff}^r_c(\tilde{M})_0 \leq 2k + 7. \]

Theorem IV.

\(M = \bigoplus_{i=1}^{\infty} N \): an infinite connected sum of a closed \(2m \)-manifold \(N \)

(or an infinite sum of finitely many compact \(2m \)-manifolds)

\[\implies cld \text{ Diff}^r(M)_0 < \infty \quad \text{and} \quad cld \text{ Diff}^r_c(M)_0 < \infty. \]

Theorem V. \(M = \text{Int } W \) \((W \): a compact \(n \)-manifold with \(\partial \neq \emptyset \))

\[\implies cld \text{ Diff}^r(M)_0 \leq \max\{cld \text{ Diff}^r(W, \partial)_0, 2\} + 2. \]

\(\circ \) \(\text{Diff}^r(M)_0 \): uniformly perfect for \(n \neq 2, 4 \)
Theorem VI.

[1] M: a compact connected n-manifold possibly with ∂, $n \neq 2, 4$

\implies $\text{Diff}^r(M, \partial)_0$: uniformly simple

$\text{Diff}^r(M)_0$: bounded and $\text{Diff}^r_c(M)_0$: uniformly simple

in the following cases:

(1) $n = 2m + 1$

(2) $n = 2m$, M satisfies one of the following conditions:

(i) \exists Handle decomp. without m-handles

for $m \geq 3$

(ii) \exists Handle decomp. \mathcal{H} s.t. $\# m$-handles $< \infty$

each closed m-cell of $P_{\mathcal{H}}$ has SDP for itself in M

(iii) M: a covering space over a closed $2m$-manifold

(iv) M: an infinite sum of finitely many compact $2m$-manifolds

[3] $M = \text{Int} W$ (W: a compact n-manifold with $\partial \neq \emptyset$)

$\text{Diff}^r(W, \partial)_0$: bounded \implies $\text{Diff}^r(M)_0$: bounded
§4. Absorption / displacement property

M: an n-manifold possibly with ∂
$O(M), \mathcal{F}(M), \mathcal{K}(M)$
$O \in \mathcal{O}(M), K \in \mathcal{K}(M), L \in \mathcal{F}(M)$
\mathcal{P}: a condition for $\varphi \in \text{Diff}_c(M, M_O)_0$.

Definition I. (Absorption property)

(1) $C \in \mathcal{K}(O)$:
 (i) C is absorbed to K in O with \mathcal{P}
 $$\iff \exists \varphi \in \text{Diff}_c(M, M_O)_0 \text{ s.t. } \varphi(C) \subset K, \varphi : \mathcal{P}$$
 (ii) C is weakly absorbed to K in O with \mathcal{P}
 $$\iff C \text{ is absorbed to "any neighborhood of } K" \text{ in } O \text{ with } \mathcal{P}.$$

(2) K has the (weak) absorption property in O with \mathcal{P}

$$\iff \forall C \in \mathcal{K}(O) \text{ is (weakly) absorbed to } K \text{ in } O \text{ with } \mathcal{P}.$$

(3) When $K \in \mathcal{K}(O)$:
 K has the (weak) neighborhood absorption property in O with \mathcal{P}

$$\iff \exists \text{ a compact nbd of } K \text{ in } O \text{ is (weakly) absorbed to } K \text{ in } O \text{ with } \mathcal{P}.$$
Definition II. (Displacement property)

(1) K is displaceable from L in O

$$
\iff \exists \psi \in \text{Diff}_c(M, M_O)_0 \text{ s.t. } \psi(K) \cap L = \emptyset
$$

(2) K is strongly displaceable from L

$$
\iff K \text{ is displaceable from } L \text{ in any open neighborhood of } K \text{ in } M.
$$

Example. K is strongly displaceable from L in M in the following cases:

(1) K has arbitrarily small open n-disk nbds U in M with $U \not\subset L$.

(2) $K \subset \text{Int } M$: a compact k-dim stratified subset

$L \subset M$: an ℓ-dim stratified subset

(i) $k + \ell < n$

(ii) $k + \ell = n$: $\text{Cl}_M(K - K^{(k-1)})$: str. disp. from $\text{Cl}_M(L - L^{(\ell-1)})$ in M

(3) $L \subset M$: a submanifold, $K \in \mathcal{K}(L)$

The normal bundle of L in M admits a non-vanishing section over K.
Theorem II'. \(n = 2m \).

(2) \(M \) : an \(n \)-manifold without boundary

\[cld \text{Diff}^r(M)_0 \leq 3k + 8 \quad \text{and} \quad cld \text{Diff}^r_c(M)_0 \leq 3k + 5 \]

if \(m \geq 3 \), \(\exists \) Handle decomp. \(\mathcal{H} \) s.t. \# \(m \)-handles \(\leq k \)

each closed \(m \)-cell of \(P_\mathcal{H} \) has **SDP for itself** in \(M \).

Example in Closed manifold case.

\(M = S^m \times S^m \) : the product of two \(m \)-spheres

\(S^m \) has a natural handle decompostion with one 0-handle and one \(m \)-handle

\(\mathcal{H} \) : the product handle decompostion of \(M \)

(one 0-handle, two \(m \)-handles and one \(2m \)-handle)

\(P_\mathcal{H} \) : the core complex of \(\mathcal{H} \)

two open \(m \)-cells \(\sigma_j \) (\(j = 1, 2 \))

\(Cl_M \sigma_j \subset M \) (\(j = 1, 2 \)) : smooth \(m \)-spheres with a trivial normal bundle

each \(Cl_M \sigma_j \) (\(j = 1, 2 \)) is strongly displaceable from itself in \(M \)

\(\therefore cld \text{Diff}^r(M)_0 \leq 11 \quad \text{if} \quad m \geq 3, \quad 1 \leq r \leq \infty, \quad r \neq 2m + 1. \)

\(\circ Cl_M \sigma_j \) is not displaceable from \(Cl_M(\sigma_1 \cup \sigma_2) \).
§5. Estimation on cl, clb^f, clb^d

[1] Basic Strategy due to BIP & T. Tsuboi

The case for closed n-manifolds + handle decompositions \mathcal{H}

(s.t. $\mathcal{P}_\mathcal{H}$: Cell complex in $2m$-dim)

[2] Extension of Basic Strategy :

In the compact case :

The case for compact manifolds with ∂ + triangulations

The case for compact n-submanifolds

in open n-manifolds + handle decompositions

In the open manifold case :

Improvements + New Ideas :

Arguments in Basic Strategy — effective even in the closed manifold case

(1) Separate the absorption/displacement property from the related arguments.

(2) Improvements of factorizations of isotopies
(3) $2m$-dim case:

Grouping of closed m-cells in handle decompositions

m-simplices in triangulations

(under some displacement conditions)

(2), (3) \leadsto Finer estimates of cl and clb^f

For compact manifolds with ∂:

(1) Extension of basic factorization lemmas to the ∂-case

(under the absorption/displacement condition)

(2) Use triangulations, the (double mapping) cylinder structure between complementary full subcomplexes and the flows induced by this cylinder structure.

\circ Can not use the usual handle decompositions.

For compact n-submanifolds

in an open n-manifold M with a handle decomposition \mathcal{H}
(1) Use triples $N \subseteq N_1 \subseteq N_2$ of compact n-submanifolds s.t.

$$N_1 : \mathcal{H}\text{-saturated}, \quad N_2 : \mathcal{H}^\ast\text{-saturated}.$$

(2) Obtain the relative estimates

$$cld \left(\text{Diff}^r(M, M_N)_0, \text{Diff}^r(M, M_{N_2})_0 \right)$$

○ Can not apply Basic Strategy to N_1 directly.

For open manifolds

(1) Factorization of isotopies on open manifolds — Reduction to Compact case

(2) $2m$-dim case:

Grouping of closed m-cells in handle decompositions

m-simplices in triangulations

(under some displacement conditions)

Take a finite cover of infinitely many closed m-cells / m-simplices

in the following cases:

(i) a covering space of a closed $2m$-manifold

(ii) an infinite sum of finitely many compact $2m$-manifolds.

(3) Introduce clb^d to deduce the boundedness of $\text{Diff}^r(M)_0$.
Factorization of isotopies on open manifolds:

\(M \) : an open \(n \)-manifold

\(\forall F \in \text{Isot}^r(M)_0 \)

\(\exists \) a factorization \(F = GH \) s.t.

\[
\operatorname{supp} G \subset \bigcup_{k=1}^{\infty} L_k : \text{a discrete union of compact } n\text{-submfd of } M
\]

\[
\operatorname{supp} H \subset \bigcup_{k=1}^{\infty} N_k : \text{a discrete union of compact } n\text{-submfd of } M
\]
References.

D. Burago, S. Ivanov and L. Polterovich (BIP)

T. Tsuboi

K. Fukui, T. Rybicki, T. Yagasaki (FRY)
End of Talk

Thank you very much for your attention!