Diffeomorphism groups of non-compact manifolds
dewed with the Whitney C^∞-topology

Taras Banakh (Ivan Franko National University of Lviv, Ukraine)
Tatsuhiko Yagasaki (Kyoto Institute of Technology, Japan)

2015 Math. Society of Japan
Annual Meeting, Topology Section
March. 22, 2015, Meiji Univ.
§1. Diffeomorphism Groups with Whitney C^∞-topology

M : Non-compact C^∞ n-manifold (without boundary)

$\mathcal{D}(M)$: Diffeo Group of M (Whitney C^∞-topology) — Top group

$\mathcal{D}_0(M)$: the identity connected component of $\mathcal{D}(M)$

$\mathcal{D}_c(M) \subset \mathcal{D}(M)$: Subgroup of Diffeo’s with compact support

Basic Property. (BMSY, 2011)

(1) $\mathcal{D}_c(M)$: Paracompact $\mathcal{D}_0(M) \subset \mathcal{D}_c(M)$: Open normal subgroup

(2) $(M_i)_{i \in \mathbb{N}}$: Compact n-submfds of M s.t. $M_i \subset \text{Int}_MM_{i+1}$, $M = \bigcup_i M_i$

$G(M_i) := \{h \in \mathcal{D}_c(M) \mid \text{supp } h \subset M_i\} < \mathcal{D}_c(M)$: Closed subgroup

$G(M_1) \subset G(M_2) \subset \cdots \quad \mathcal{D}_c(M) = \bigcup_i G(M_i)$

(i) $\mathcal{D}_c(M) = \varprojlim_i G(M_i)$ (Direct limit in Category of Top Groups)

(ii) $G(M_i)$: Top manifold modeled on $\text{Infinite-dim separable Fréchet space } \approx l_2$

Problem. Global Top Type of $\mathcal{D}_c(M)$?
LF spaces = Direct Limits of Fréchet spaces in Category of Top vector spaces

Top classification of LF spaces (P. Mankiewicz 1974)

Infinite-dim separable LF spaces (up to homeo.)

1. \(\mathbb{R}^\omega \equiv \text{dir lim} \{ \mathbb{R}^1 \subset \mathbb{R}^2 \subset \mathbb{R}^3 \subset \cdots \} \approx \Box^\omega \mathbb{R} \)

2. \(l_2 \)

3. \(l_2 \times \mathbb{R}^\omega \approx \Box^\omega l_2 \)

Box product · Small box product

Definition. \(X \quad \omega = \{0, 1, 2, \cdots \} \)

1. Box product of \(X \) : \(\Box^\omega X = \prod_{n \in \omega} X \)

 Box Topology : \(\prod_n U_n \quad (U_n \subset X : \text{Open subset}) \)

2. Small box product of \((X, \ast)\) : \(\Box^\omega X \subset \Box^\omega X \)

 Subspace of finite sequences : \((x_0, x_1, \ldots, x_i, \ast, \ast, \ldots) \)

 Box product \(\prod_i X_i, \quad \text{Small box product} \quad \Box^\omega_i (X_i, \ast_i) \)
Top. Type

1-dim case \((\mathcal{D}(\mathbb{R}), \mathcal{D}_c(\mathbb{R})) \approx (\Box^\omega l_2, \Box^\omega l_2)\) (BY, 2010)

\(n\)-dim case \((\mathcal{D}(M), \mathcal{D}_c(M)) \approx_\ell (\Box^\omega l_2, \Box^\omega l_2)\) (BMSY, 2011)

\(*) \mathcal{D}_c(M) \approx_\ell \Box^\omega l_2 \approx l_2 \times \mathbb{R}^\infty\)

Thm. \(\mathcal{D}_c(M) \approx\) Open subset of \(l_2 \times \mathbb{R}^\infty\) (BY 2015)

Cor. \(\mathcal{D}_c(M) \approx L \times \mathbb{R}^\infty\) for some \(l_2\)-manifold \(L\) \((L \approx \mathcal{D}_c(M))\)

(1) \(M\) : Connected

\(\mathcal{D}_0(M) \approx l_2 \times \mathbb{R}^\infty\) if \(n = 1, 2\) or

\(n = 3\) and \(M\) : orientable, irreducible

(2) \(\mathcal{D}_0(M) \approx \mathcal{D}_0(N; \partial N) \times \mathbb{R}^\infty\)

if \(N\) : Compact Connected \(C^\infty\) \(n\)-manifold with Boundary

\(M = \text{Int} N\)
§4. Results on Top Groups and Towers of Subgroups

\(G \): Top group \((e \text{: the identity element of } G)\)

\(G_n \) \((n \in \omega)\): Tower of Closed subgroups of \(G \)

\((G_0 \subset G_1 \subset G_2 \subset \cdots, G = \bigcup_n G_n)\)

\(p : \square_n(G_n,e) \rightarrow G : p(x_0, x_1, \ldots, x_k, e, e, \ldots) = x_k \cdots x_1 x_0 \)

* \(p \): continuous, surjective

\(p : \text{open} \implies G = \varprojlim G_n \) (in Category of Top Groups)

(i) \(p : \text{open} \) \hspace{1cm} (ii) \(G_n \rightarrow G_n/G_{n-1} \) admits a global section \(s_n \).

\[\implies s = \square_n s_n \stackrel{\square_n G_n}{\rightarrow} \square_n(G_n/G_{n-1}) \stackrel{ps}{\sim} G \]

Study of Top LF-manifolds and Direct limit of Uniform spaces

Criterion for open subsets of $\ell_2 \times \mathbb{R}^\infty$ (BMRSY, 2013)

(i) G: Non-metrizable

(ii) G_n: separable ℓ_2-manifold

(iii) $p: \Box_n G_n \to G$: open

(iv) $G_n \to G_n/G_{n-1}$ has a local section

(v) G_n/G_{n-1} is an ℓ_2-manifold

(more generally, each Z-point of G_n/G_{n-1} is a strong Z-point).

$\implies G \approx$ Open subset of $\ell_2 \times \mathbb{R}^\infty$
References.

BMRSY = T. Banakh, K. Mine, D. Repovš, K. Sakai, T. Yagasaki

Thank you very much for your attention!