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Abstract. A phase-field topology optimization model, which maximizes the structure stiffness
under fixed material volume using a double-obstacle function, has been developed. By using
the double-obstacle function, the interface region can be defined clearly. By performing two-
dimensional simulations for a cantilever model and comparing the results to those obtained
from the phase-field topology model with a double-well function, the fundamental characteris-
tics of the developed model have been investigated. As a result, although some unstable struc-
tures were observed, almost all results coincided with those obtained by a phase-field topology
model with a double-well function.
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1 INTRODUCTION

Topology optimization that optimizes material layout, which includes changes in the number
and shape of holes within a given design space, is a method having the highest degree of free-
dom among optimization design methods [1]. The level-set method is the method most often
used to track surface position in topology optimization simulations. Although the phase-field
method is another surface tracking method and is the most powerful numerical method used
in material microstructure design, there are only a few topology optimization models in which
the phase-field method is used as the surface tracking method instead of the level-set method
[2]. In our previous study, we have developed a phase-field topology optimization model that
maximizes structure stiffness [3]. This model was derived using the same procedure as in a
material microstructure model and the coefficients used in the phase-field equation were clearly
related to the surface energy and surface thickness.

In the present study, we have developed a phase-field topology optimization model using a
double-obstacle function instead of the double-well function used in ordinary phase-field mod-
els [2, 3]. By performing two-dimensional simulations for a cantilever model and comparing the
results to those obtained using the phase-field topology model with a double-well function, the
fundamental characteristics of the developed model have been confirmed. The double-obstacle
function is employed in the multiphase-field model [4], for which application to multicompo-
nent structure design is anticipated.

2 PHASE-FIELD TOPOLOGY OPTIMIZATION MODEL

In this chapter, by following previous work [3], a phase-field topology optimization model
with a double-obstacle function is derived together with a model with a double-well function.
Hereafter, the phase-field topology optimization models with double-well and double-obstacle
functions are referred to as “Model I” and “Model II,” respectively.

The phase-field variable φ is defined as φ = 1 in solid and φ = 0 in vapor (or hole) and
changes smoothly and rapidly at the surface region. The free energy functional that maximizes
the structure stiffness under a constant volume can be described as

F = Fm + Fp − Ff , (1)

where Fm is the free energy in bulk, Fp is the penalty energy to keep a constant volume, and Ff

is the external force potential. These are expressed as

Fm =
∫

V
fdV =

∫
V

(fgrad + fdoub − felast) dV , (2)

Fp = k |V − V0| , (3)

Ff = −
∫

S
uip̄idS. (4)

In Eq. (2), the gradient energy density fgrad, the double-well potential fdoub, and the elastic
strain energy felast are described as follows:

fgrad =
a2

2
|∇φ|2 , (5)

fdoub = Wq (φ) , (6)

felast =
1

2
Cijkl (φ) εijεkl =

1

2
Cijklεijεklρ (φ) . (7)
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Here, a is the gradient coefficient, W is the energy barrier, εij is the strain tensor, and Cijkl is
the elastic coefficient tensor. q (φ) is the double-well or double-obstacle function and ρ (φ) is
the solid density function. For q (φ) and ρ (φ), we chose the following two types of function:

Model I:
q (φ) = φ2 (1 − φ)2 , (8)

ρ (φ) = φ3
(
10 − 15φ + 6φ2

)
; (9)

Model II:
q (φ) = φ (1 − φ) , (10)

ρ (φ) =
8

π

{
1

4
(2φ − 1)

√
φ (1 − φ) +

1

8
arcsin (2φ − 1)

}
+

1

2
. (11)

Figure 1 shows the profiles of q(φ) and ρ(φ) for Model I (solid line) and Model II (broken line).
For q(φ), Eq. (8) and Eq. (10) are multiplied by 16 and 4, respectively, to set those maximum
values to one.
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Figure 1: Profiles of q(φ) and ρ(φ).

In Eq. (3), k is the penalty coefficient, V0 is the prescribed constant volume, and V is the
current volume defined as

V =
∫

V
ρ (φ) dV . (12)

In Eq. (4), ui is the displacement vector and p̄i is the prescribed surface pressure vector.
By following the Allen–Cahn equation, the evolution of the phase-field variable φ can be

derived as the following equation:

∂φ

∂t
= −Mφ

δF

δφ
= −Mφ

(
δFm

δφ
+

δFp

δφ
− δFf

δφ

)
, (13)

where Mφ is the phase-field mobility. By substituting Eq. (1) into Eq. (13), the following time
evolution equations for both models can be obtained:

Model I:

∂φ

∂t
= Mφ

[
a2∇2φ + 4Wφ (1 − φ)

(
φ − 1

2
+

15

2W

1

2
Cijklεijεklφ (1 − φ) ± 15

2W
kφ (1 − φ)

)]
;

(14)
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Model II:

∂φ

∂t
= Mφ

[
a2∇2φ + 2W

{
φ − 1

2
+

1

2W

1

2
Cijklεijεkl · 8

π

√
φ (1 − φ) ± 1

2W
k

8

π

√
φ (1 − φ)

}]
.

(15)
By making the time of Eqs. (14) and (15) dimensionless and substituting the relations be-

tween a and W and the interface energy γ and interface thickness δ (with b a constant related
to δ), or

Model I:

a =

√
3δγ

b
, W =

6γb

δ
; (16)

Model II:

a =
2

π

√
2δγ, W =

4γ

δ
, (17)

into Eqs. (14) and (15), the following final time evolution equations for φ can be derived:
Model I:

∂φ

∂t
=

δ2

8b2
∇2φ + φ (1 − φ)

(
φ − 1

2
+ β

)
; (18)

Model II:
∂φ

∂t
=

δ2

π2
∇2φ +

(
φ − 1

2
+ β

)
. (19)

Here, β is set as
Model I:

β =

{
e(φ)
eave

β1 + 4αβ2φ (1 − φ) · · · e (φ) < eave,

β1 + 4αβ2φ (1 − φ) · · · e (φ) ≥ eave;
(20)

Model II:

β =

⎧⎨
⎩

e(φ)
eave

β1 + 2αβ2

√
φ (1 − φ) · · · e (φ) < eave,

β1 + 2αβ2

√
φ (1 − φ) · · · e (φ) ≥ eave,

(21)

where β1 and β2 are the constants satisfying β1 + β2 = 0.5, and e(φ) is the elastic strain energy
at the surface region expressed as

Model I:

e (φ) =
1

2
Cijklεijεklφ (1 − φ) ; (22)

Model II:

e (φ) =
1

2
Cijklεijεkl

√
φ (1 − φ), (23)

with eave the average value of e (φ). The coefficient α in Eqs. (20) and (21) is used to satisfy the
constant volume with high accuracy and is determined by α = (V n

1 − V0)/(V
n
1 − V n

2 ), where
V n

1 =
∫
V ρ (φn

1) dV is the volume calculated under α = 0 and V n
2 =

∫
V ρ (φn

2) dV is the volume
calculated under α = 1. As shown here, the evolution equations for φ, Eqs. (18) and (19), are
solved three times at every time step.

The stress field is calculated by solving the principle of virtual work
∫
V δεijσijdV =

∫
S δuipidS,

the strain-displacement relations εij = (ui,j + uj,i)/2, and the stress–strain relations σij =
Cijklεij by using a finite element method with four-node elements in a plane strain problem,
where ui is the displacement, pi is the external pressure, εij is the strain, σij is the stress, Cijkl

is the elastic coefficient, and δ means the virtual quantities.
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Figure 2: Cantilever model.
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Figure 3: Initial conditions.

3 NUMERICAL CONDITIONS

Stiffness maximization simulations of a cantilever using the two developed models are per-
formed and the results are compared. Figure 2 shows the employed cantilever model with size
400Δx×200Δx, where Δx is the square element size. The nodal displacements of the left side
are constrained in all directions and an external force is applied to the central node on the right
side.

Figure 3 shows four initial conditions, where the black region indicates the solid and the
white region indicates the holes. The volume fraction of the solid is set to be 50%. The phase-
field profiles shown in Fig. 3 are set by using the following equilibrium profiles:

Model I:

φeq =
1

2

{
1 − tanh

(
b

δ
r

)}
; (24)

Model II:

φeq =
1

2

{
1 − sin

(
π

δ
r
)}

. (25)
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Figure 4: Equilibrium phase-field profiles for Model I and Model II.

5



Tomohiro Takaki

Figure 4 shows the phase-field profiles around the interface indicated by Eqs. (24) and (25).
Here, δII = cδI = 1.682δI, δI = 4, and b = 2.2 are employed, where δI and δII are the interface
thickness δ for Model I and Model II, respectively. The relation c = 1.682 is derived by setting
aI = aII or MφI = MφII.
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Figure 5: Final morphologies.

4 NUMERICAL RESULTS

Figure 5 shows the final morphologies at 10000 steps for (a) Model I and (b) Model II.
Here, the time increment Δt is set to 8b2(Δx)2/(5δ2) and π2(Δx)2/(5δ2) for Models I and I
I, respectively. The interface thicknesses δI for Model I are 2Δx, 3Δx, 4Δx, and 5Δx, and δII
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values for Model II are 3.364Δx, 5.046Δx, 6.728Δx, and 8.410Δx in order to keep the relation
δII = 1.682δI. The numerical values indicated in Fig. 5 are the stiffness ratios for the condition
δI = 2Δx and Case A.

In Fig. 5, the effects of initial morphology on the final morphology are not absent but are
relatively small. There are one or two types of topologies with the same interface thickness, al-
though there are a few exceptions. Therefore, it is concluded that the dependencies on the initial
morphology are relatively small. For the effects of interface thickness on the final morphology,
it is observed that the stiffness increases with decreasing interface thickness. However, if the
interface thickness become smaller than 2Δx, the calculation become unstable. Therefore, the
suitable interface thickness is δ = 2Δx or 3Δx.
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Figure 6: Variations in stiffness ratio for the condition of δ = 2Δx and Case A.
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Figure 7: Morphological changes for Model I, with δ = 2Δx, for Case A.

Comparing Model I and Model II, we can see similar final morphologies. Figure 6 shows
variations in the stiffness ratio for the condition of δ = 2Δx and Case A. The stiffness is defined
as the value where the applied force f̄ is divided by the displacement of the point. The ordinate
of Fig. 6 is the ratio to the initial condition. It is confirmed that variations in the stiffness ratio
for both models are almost identical with monotonic increases. Figure 7 shows the variations
of morphology of Model I for the conditions of Fig. 6. At the beginning of the calculation, the
circular holes changed shape to squares in order to arrange the solid along the principal stress
direction. After that, the solid in the upper and lower regions around the applied concentrated
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force disappears. These morphological changes occur to increase the structure stiffness, as
seen in Fig. 6. However, from Fig. 5(b), a few nonsymmetrical morphologies in the upper
and lower regions can be observed in Model II. Therefore, it is concluded that a phase-field
topology optimization model with a double-obstacle function can be used to calculate almost
the same final morphologies as a model with a double-well function, although it sometimes
exhibits unstable results.

5 CONCLUSIONS

A phase-field topology optimization model with a double-obstacle function was derived to-
gether with a model with a double-well function. By performing two-dimensional topology
optimization simulations for a cantilever subjected to a concentrated force, the fundamental
characteristics of the developed model were investigated. As a result, it was commonly con-
cluded for both models that the effects of initial morphology on the final morphology are rel-
atively small and higher stiffness values are obtained for thinner interfaces. Furthermore, the
developed model with a double-obstacle function can be used to calculate an almost similar final
morphology with a similar stiffness as a model with a double-well function, although some final
nonsymmetrical shapes appear in upper and lower regions of the model with a double-obstacle
function.
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