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Abstract. We consider Schrodinger operators with decreasing potentials on the metric lattice.
The metric lattice is the simplest metric graph M = (Z<, £), where Z is the vertex set and the edge
set £ is given by

E={(mm+e), YmeZ' j=1,.,d}, (0.1)
and e; = (1,0,---,0),--- ,eq = (0,---,0,1) is the standard orthonormal basis in R¢. Each edge
e € £ of M? will be identified with the segment [0, 1]. This identification introduces a local coordi-
nate t € [0, 1] along each edge. For each function y on M? we define a function y, = y se€é.
We identify each function y on e with a function on [0, 1] by using the local coordinate ¢ € [0, 1].
Let L?(MY) be the Hilbert space of all function ¥y = (ye)ece, Where each y, € L*(e) = L*(0,1),
equipped with the norm ||y|| r2ya), where LP(M?), p > 1 is given by

Hy”ip(Md) = Z HyeHiP(e) < 00.

ect
We define the metric Laplacian Ajy; on y = (Ye)ece € L2(MY) by

(Apy)e = —yo, plus so — called Kirchhof f conditions.
The Laplacian Hy = Aj; > 0 and has the spectrum
o(Ho) = 04c(Hp) U op(Ho), 0ac(Ho) = [0,00), op(Hy) = {m*n* n € N}.

where o,(Hp) is the set of all flat bands (eigenvalues with infinite multiplicity). We consider
Schrodinger operators H = Hy + Q on M9, where the real potential Q € L'(M?). We have
the following results:

Let v = |Q|2 and d > 3. Then the operator-valued function

v(Hy — ) ' Poe(Ho)v : C\ [0,00) — B
is analytic and Holder continuous up to the boundary, where B is the class of bounded operators.
Furthermore, the wave operators
Wi =s—lime™e 0P, (Hy) as t — +o0 (0.2)
exist and are complete, i.e., #;.(H) = Ran W_.
Furthermore, we describe the eigenvalues of the Schrodinger operators H = Hy + Q).

If the potential () is uniformly decaying, then we obtain the Mourre estimates for the free metric
Laplacian and describe more exactly the eigenvalues of the Schrodinger operators H.
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