Fabrication of Embedded 45-Degree Micromirror Using Liquid-Immersion Exposure for Single-Mode Optical Waveguides

Junichi Inoue, Tomonori Ogura, Kenji Kintaka, Member, IEEE, OSA, Kenzo Nishio, Yasuhiro Awatsuji, Member, IEEE, OSA, and Shogo Ura, Member, IEEE, OSA

Abstract—A new integration technique of a 45-degree micromirror providing a vertical coupling between a free-space wave and a guided wave in a dielectric-glass waveguide for high-density intra-board optical interconnection was described. A planar waveguide consisting of a 4-um-thickness GeO₂:SiO₂ guiding core layer and a 2-\mu m-thickness SiO₂ cladding layer on an SiO₂ substrate was used for characterization of the micromirror. A trench with 8- μ m depth and 8- μ m width was formed in the waveguide by using a dry etching technique. A photoresist filling the trench was exposed at an angle of 45 degrees in the water to give a 45-degree taper in the trench. Au was evaporated on the taper to give high-reflection micromirror. An excess loss due to the micromirror insertion was estimated to be about 2 dB by Fig. 1. Schematic perspective comparing insertion losses of waveguides with and without the micromirror.

Index Terms—Chip-to-chip optical interconnection, 45-degree micromirrors, liquid-immersion exposure technique, single-mode waveguides.

Fig. 4. Fabrication process of the micromirror.

embedded micromirror.

10 µm

(a)

(b)

Fig. 6. Optical microscope

photographs of cross-sectional

(a) and top (b) views

of the fabricated micromirror.

Fig. 8. Experimental result of input coupling. (a) Near-field image. (b) Intensity profile.

(b) Fig. 3. Dependence of input coupling efficiency on VCSEL position gaps in x, y and z direction. (a) Dependence on Δx . (b) Dependence on Δy . (c) Dependence Δz on

Metal layer

Fig. 9. Experimental setup for measuring insertion loss of the fabricated waveguide without micromirror.

Fig. 10. Experimental result of fabricated waveguide without micromirror. (a) Near-field image. (b) Intensity profile.

SiO2 clad (n=1.46)

GeO2:SiO2 guiding core

(n=1.47)

SiO2 substrate

Fig. 11. Experimental setup for characterizing output coupling.

20 um

Fig. 12. Experimental result of output coupling. (a) Near-field image. (b) Intensity profile.