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Abstract—A new integration technique of a 45-degree mi- 43-degree micromirror
cromirror providing a vertical coupling between a free-space wave
and a guided wave in a dielectric-glass waveguide for high-density
intra-board optical interconnection was described. A planar
waveguide consisting of a 4-pm-thickness GeO:SiO2 guiding
core layer and a 2-pm-thickness SiO» cladding layer on an SiO.
substrate was used for characterization of the micromirror. A
trench with 8-ym depth and 8-pm width was formed in the
waveguide by using a dry etching technique. A photoresist filling
the trench was exposed at an angle of 45 degrees in the water
to give a 45-degree taper in the trench. Au was evaporated on
the taper to give high-reflection micromirror. An excess loss due
to the micromirror insertion was estimated to be about 2 dB by
comparing insertion losses of waveguides with and without the
micromirror.
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Fig. 5. Configuration of liquid
immersion exposure.
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Fig. 4. Fabrication process of
the micromirror.
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Fig. 6. Optical microscope
photographs of cross-sectional
(a) and top (b) views
of the fabricated micromirror.
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Fig. 2. Cross-sectional
diagram of micromirror and
input coupling of VCSEL
to a waveguide.
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Fig. 7. Experimental setup for
characterizing input coupling.
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Fig. 8. Experimental result of
input coupling. (a) Near-field
image. (b) Intensity
profile.
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Fig. 9. Experimental setup for
measuring insertion loss of the
fabricated waveguide
without micromirror.
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Fig. 10. Experimental result of
fabricated waveguide without
micromirror. (a)
Near-field image. (b) Intensity

profile.

Objective lens

CCD (NA=0.40)

Input coupling efficiency [dB]

Az [um]

(©)

Fig. 3. Dependence of input coupling efficiency on VCSEL position gaps in x, y and z
direction. (a) Dependence on Ax. (b) Dependence on Ay. (c) Dependence Az on .
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Fig. 11. Experimental setup
for characterizing output

coupling.
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Fig. 12. Experimental result of
output coupling. (a) Near-field
image. (b) Intensity

profile.
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