Potential characterization of free-space-wave drop demultiplexer using cavity-resonator-integrated grating input/output coupler

Kenji Kintaka,^{1,*} Katsuya Shimizu,² Yuki Kita,² Satoshi Kawanami,² Junichi Inoue,² Shogo Ura,² and Junji Nishii³

¹Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

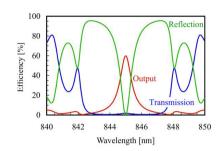


Fig. 3. Calculated wavelength dependences of output, transmission, and reflection efficiencies of the CRIGIC designed for TE1 mode.

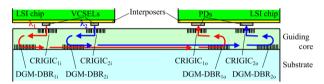


Fig. 1. Cross-sectional schematic view of WDM optical interconnection using free-space-wave ADMs with CRIGICs.

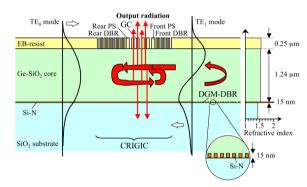


Fig. 2. Cross-sectional structure and refractive index profile of the designed waveguide device.

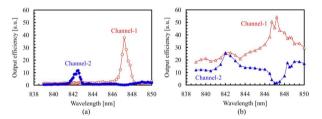


Fig. 6. Measured wavelength dependences of two-channel demultiplexers using (a) CRIGICs and (b) GCs.

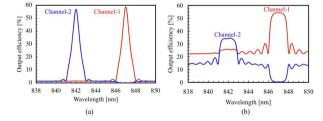


Fig. 4. Calculated wavelength dependences of two-channel drop demultiplexers using (a) CRIGICs and (b) GCs.

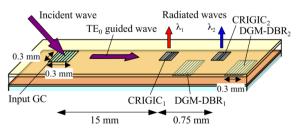


Fig. 5. Schematic view of the two-channel drop demultiplexer using CRIGICs.

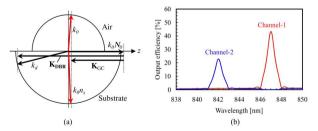


Fig. 7. (a) Wave vector diagram of CRIGIC that couples with TE0 mode. (b) Calculated wavelength dependence of tow-channel demultiplexer using CRIGICs with consideration for the substrate radiations by DBRs in CRIGICs.

²Department of Electronics, Kyoto Institute of Technology, Matugasaki, Sakyo-ku, Kyoto 606-8585, Japan ³Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan *kintaka.kenji@aist.go.jp