Determination of cavity length of cavityresonator-integrated guided-mode resonance filter

Junichi Inoue,^{1,*} Tomohiro Kondo,¹ Kenji Kintaka,² Kenzo Nishio,¹ and Shogo Ura¹

¹Department of Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyoku, Kyoto 606-8585, Japan ²National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

*inoue@kit.ac.jp

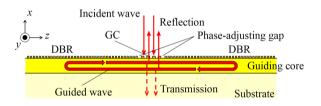


Fig. 1. Basic configuration of CRIGF and light wave propagation.

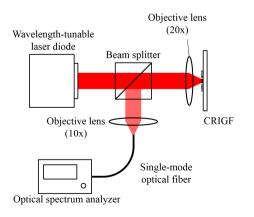


Fig. 4. Experimental setup for measuring a reflection spectrum.

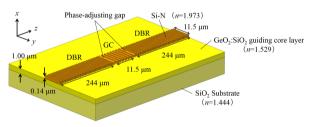


Fig. 2. Schematic view of designed CRIGF.

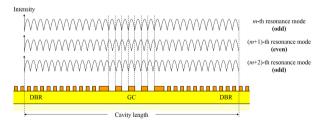


Fig. 6. Resonance-mode intensity distributions of CRIGF.

Fig. 8. Optical microscope photograph of fabricated CRIGF of phase-adjusting gaps of 54.3μm.

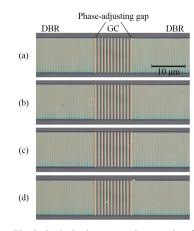


Fig. 3. Optical microscope photographs of fabricated CRIGFs of phase-adjusting gaps

(a) $3\Lambda/8-3\Lambda/15$, (b) $3\Lambda/8-2\Lambda/15$, (c) $3\Lambda/8-\Lambda/15$, and (d) $3\Lambda/8$.

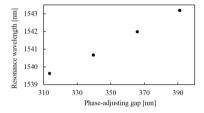


Fig. 5. Resonance wavelength at each phase-adjusting gap.

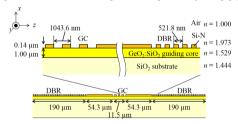


Fig. 7. Interference fringes obtained for device with buffer laver thickness of 1.99 um.

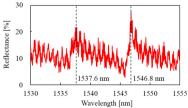


Fig. 9. Measured reflection spectrum of the fabricated CRIGF.