Molecular dynamics simulation of structure formation of short chain molecules

Susumu Fujiwara and Tetsuya Sato
Theory and Computer Simulation Center, National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-5292, Japan

(Received 9 November 1998; accepted 10 February 1999)

Abstract

Molecular dynamics simulations are carried out to study the structure formation of 100 short chain molecules, each of which consists of $20 \mathrm{CH}_{2}$ groups. Our simulations show that the orientationally ordered structure is formed from a random configuration by quenching. The global orientational order starts to increase suddenly after a certain duration and grow in a stepwise fashion afterwards. This behavior is also found in the growth process of the local orientationally-ordered domains. It is found from the microscopic analysis of the structure formation process, that parallel ordering of chain molecules starts to occur after the chain molecules stretch to some extent. From the analysis of the obtained orientationally ordered structure and the molecular mobility, we also find the following characteristic features: (i) The chain molecules are packed hexagonally at 400 K and the transition from the hexagonal phase toward the orthorhombic phase takes place as the temperature decreases. (ii) The gauche bonds in the same chain molecule tend to form gauche pairs. The gauche pairs with the same sign form the double gauche defects and those with the opposite sign form the kink defects. (iii) In the hexagonal phase, the chain molecules become longitudinally mobile. This result, which is obtained by the microscopic analysis of the chain motion, is the microscopic evidence to confirm the existence of the chain sliding diffusion in the hexagonal phase which underlies the sliding diffusion theory of polymer crystallization proposed by Hikosaka [Polymer 28, 1257 (1987); 31, 458 (1990)]. © 1999 American Institute of Physics. [S0021-9606(99)50118-9]

I. INTRODUCTION

Structure formation of chain molecules, such as n-alkanes and polyethylene chains, is a very interesting research topic in physics, chemistry, and biology and has attracted the attention of many researchers. Since chain molecules have many internal degrees of freedom, structure formation proceeds in a complex fashion. Intensive experimental studies have been made on various structure formation processes of chain molecules, such as crystallization of polymers ${ }^{1-11}$ and surface freezing of oligomers. ${ }^{12-16}$ The primary nucleation in the early stages of crystallization of polyethylene ${ }^{3-5}$ and poly(ethylene terephthalate) ${ }^{6-11}$ has been investigated by various time-resolved measurements. Wu et al. discovered the surface freezing phenomenon in n-alkanes ${ }^{12-15}$ and n-alcohols ${ }^{16}$ by x-ray scattering and surface tension measurements. Surface freezing is an interesting phenomenon that an ordered monolayer is formed on the free surface of a liquid above its bulk freezing point.

Although considerable experimental investigations have thus been made, it seems difficult to observe the detailed mechanisms of the structure formation of polymer chains at the molecular level by the present experimental techniques only. Computer simulation is one of the strongest tools for investigating the molecular process of the structure formation. Over the last decade, several computer simulation studies have been done on primary nucleation of a single polymer chain, ${ }^{17-19}$ structure formation of short chain molecules, ${ }^{20-23}$ surface ordering in liquid n-alkanes, ${ }^{24}$ and secondary nucleation on a growth surface of a polymer crystal. ${ }^{25,26}$

It is well known that surface structures of chain molecules play crucial roles in determining physical properties, such as adhesion and wetting. Therefore molecular simulation studies of chain-molecule systems with free surfaces are very important from the viewpoints both of chemical physics and of engineering. Although several simulation studies of systems with free surfaces have been made on the structure formation, little is known about the detailed molecular motion during the structure formation.

In our previous papers, we have performed the molecular dynamics (MD) simulations of short chain-molecule systems with free surfaces. ${ }^{21,22}$ It was found from our simulations that the orientationally ordered structure is formed at low temperature by a sudden cooling from a random configuration at high temperature and that the formation of the orientational order proceeds in a stepwise fashion. The purpose of this paper is to clarify the dynamical processes of the structure formation of short chain molecules microscopically and analyze the molecular mobility and the conformational defects in the obtained orientationally-ordered structure. With a view to investigating the structure formation processes microscopically, we carry out the MD simulation of 100 short chain molecules and analyze the growth process of the orientational order. This paper is organized as follows. In Sec. II we give a detailed description of our simulation model and method. Our simulation results are presented in Sec. III. Summary and discussion are given in Sec. IV.

II. MODEL AND METHOD

The present computational model is the same as that used in the previous works on the structure formation of

TABLE I. Potential energy parameters used in our simulation. ${ }^{\text {a }}$

Parameter	Value	Unit
d_{0}	0.153	nm
θ_{0}	1.2310	rad
k_{d}	70000	$\mathrm{kcal} / \mathrm{nm}^{2} \cdot \mathrm{~mol}$
k_{θ}	100	$\mathrm{kcal} / \mathrm{rad}^{2} \cdot \mathrm{~mol}$
k_{ϕ}	2.0	$\mathrm{kcal} / \mathrm{mol}$
ϵ	0.1984	$\mathrm{kcal} / \mathrm{mol}$
σ	0.36239	nm

${ }^{\mathrm{a}}$ Reference 27.
short chain molecules. ${ }^{21,22}$ The model chain molecule consists of a sequence of CH_{2} groups, which are treated as united atoms. The mass of each CH_{2} group is $14 \mathrm{~g} / \mathrm{mol}$. The united atoms interact via the bonded potentials (bondstretching, bond-bending, and torsional potentials) and the van der Waals nonbonded potential (12-6 Lennard-Jones potential). The atomic force field used here is the DREIDING potential: ${ }^{27}$ (i) the bond-stretching potential,

$$
\begin{equation*}
V_{\text {stretch }}(d)=\frac{1}{2} k_{\mathrm{d}}\left(d-d_{0}\right)^{2}, \tag{1}
\end{equation*}
$$

where d_{0} is the equilibrium bond length and d is the actual bond length, (ii) the bond-bending potential,

$$
\begin{equation*}
V_{\text {bend }}(\theta)=\frac{1}{2} k_{\theta}\left(\theta-\theta_{0}\right)^{2}, \tag{2}
\end{equation*}
$$

where θ_{0} is the equilibrium bond angle and θ is the bond angle between three adjacent atoms, (iii) the torsional potential,

$$
\begin{equation*}
V_{\text {torsion }}(\phi)=\frac{1}{2} k_{\phi}[1-\cos (3 \phi)], \tag{3}
\end{equation*}
$$

where ϕ is the dihedral angle formed by four consecutive atoms, and (iv) the 12-6 Lennard-Jones potential between atoms separated by more than two bonds along the same chain and between atoms in different chains,

$$
\begin{equation*}
V_{\mathrm{LJ}}(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \tag{4}
\end{equation*}
$$

where r is the distance between atoms. The values of all the potential parameters are listed in Table I. We use the generic force field, DREIDING, because we intend to systematically investigate the structure formation process of long polymer chains as well as short chain molecules although the accuracy for specific molecules becomes low. The equations of motion are solved numerically using the velocity version of the Verlet algorithm ${ }^{28}$ and apply the Nosé-Hoover method in order to keep the temperature of the system constant. ${ }^{29-31}$ The integration time step and the relaxation constant for the heat bath variable are 1.0 fs and 0.1 ps , respectively. The cutoff distance for the 12-6 Lennard-Jones potential is 10.5 \AA. One hundred chain molecules, each of which consists of $20 \mathrm{CH}_{2}$ groups, are placed in a vacuum and other molecules such as solvent molecules are not considered. The total momentum and the total angular momentum are taken to be zero in order to cancel overall translation and rotation of chain molecules. The MD simulations are carried out by the following procedure. At first, we provide a random configuration of 100 short chain molecules at high temperature (T $=700 \mathrm{~K})$. After a simulation of $100 \mathrm{ps}\left(10^{5}\right.$ time steps $)$ is

FIG. 1. Snapshots of the chain configuration of 100 short chain molecules at various times: $t=1,200$, and 2000 ps (from left to right) for $T=400 \mathrm{~K}$. Top and bottom figures are, respectively, viewed along the c axis (top view) and the b axis (side view).
carried out in order to equilibrate the system at $T=700 \mathrm{~K}$, it is then quenched to $T=400 \mathrm{~K}$ and subsequently it is cooled stepwise to $T=100 \mathrm{~K}$ by 100 degrees. A simulation of 2 ns (2×10^{6} time steps) is performed at each temperature.

In the following section, we describe our simulation results in detail. To begin with, we investigate the formation process of the global orientational order (Sec. III A). Then the microscopic analysis of the structure formation processes is made (Sec. III B). Finally we study the molecular mobility and the conformational defects in the obtained orientationally-ordered structure (Sec. III C).

III. RESULTS

A. Formation process of global orientational order

1. Chain configuration

Snapshots of the chain configuration are shown in Fig. 1 at various times ($t=1,200$, and 2000 ps) for $T=400 \mathrm{~K}$. The a, b, and c axes, respectively correspond to the crystallographic a, b, and c axes in the orthorhombic system and are determined by the inner 37 chains (Fig. 2) after the orientationally-ordered structure is formed. ${ }^{21}$ Figure 1 indicates the following features: (i) In the early time ($t=1 \mathrm{ps}$), the chain molecules take a random configuration. (ii) As time elapses, growth of the local orientationally-ordered domains is observed in several positions ($t=200 \mathrm{ps}$). (iii) At last, several domains coalesce into a large domain and a highly ordered structure is formed ($t=2000 \mathrm{ps}$). In the ordered structure, almost all the bonds are in the trans state.

We show, in Fig. 2, the center-of-mass positions of individual chain molecules averaged between 1500 and 2000 ps for $T=400 \mathrm{~K}$. The calculated lattice constants a and b are respectively $a=0.750 \mathrm{~nm}$ and $b=0.433 \mathrm{~nm}$. Therefore the ratio a / b is calculated as $a / b=1.733 \approx \sqrt{3}$, which indicates that chain molecules are packed hexagonally at $T=400 \mathrm{~K}$.

2. Global orientational order parameter

In order to investigate the growth process of the global orientational order, we calculate the global orientational order parameter P_{2}, which is defined by

FIG. 2. The center-of-mass positions of individual chain molecules viewed along the a, b, and c axes averaged between 1500 and 2000 ps for T $=400 \mathrm{~K}$. The lattice constants a and b are $a=0.750 \mathrm{~nm}$ and $b=0.433 \mathrm{~nm}$, respectively. Hexagons are depicted in order to show a hexagonal packing of the chain molecules. A figure in each shell represents a shell number l. The a, b, and c axes are determined by the central 37 chains within a thick hexagon.

$$
\begin{equation*}
P_{2}=\left\langle\frac{3 \cos ^{2} \psi-1}{2}\right\rangle_{\text {bond }} \tag{5}
\end{equation*}
$$

where ψ is the angle between two sub-bond vectors and $\langle\cdots\rangle_{\text {bond }}$ denotes the average over all pairs of sub-bonds. The sub-bond vector is the vector formed by connecting centers of two adjacent bonds along the same chain. The parameter P_{2} takes a value of 1.0 when all sub-bonds are parallel and that of 0.0 when sub-bonds are randomly oriented. We show the time dependence of the global orientational order parameter P_{2} in Fig. 3. Up to $t \approx 150 \mathrm{ps}$, the parameter P_{2} takes a value near zero, which means that there is no global orientational order in this time region. After $t=150 \mathrm{ps}, P_{2}$ increases sharply, which indicates that the global orientational order starts to grow suddenly after a certain duration. This fact is also found in the MD simulation of a bulk short chainmolecule system. ${ }^{23}$

FIG. 3. The global orientational order parameter P_{2} vs time t at $T=400 \mathrm{~K}$.

FIG. 4. The fraction of the trans states $P_{\text {trans }}$ vs time t at $T=400 \mathrm{~K}$.

B. Microscopic analysis of the structure formation process

1. Conformational change

In order to investigate the structure formation process at the molecular level, we first examine how the conformational change takes place. In Fig. 4, we show the time dependence of the fraction of the trans states $(|\phi|<\pi / 3), P_{\text {trans }}$, at T $=400 \mathrm{~K}$. This figure tells us that $P_{\text {trans }}$ increases logarithmically up to $t \approx 350 \mathrm{ps}$ and is almost constant afterwards. It is found that the fraction of the trans states increases even in the duration when the global orientational order does not exist (see Fig. 3).

We then calculate the distribution of the size of the trans segments, i.e., the number of consecutive trans bonds, $n_{\text {tr }}$, in order to investigate the stretching of chain molecules. The distribution of the size of the trans segments $P\left(n_{\mathrm{tr}}\right)$ is normalized as

$$
\begin{equation*}
\sum_{n_{\mathrm{tr}}=1}^{n-3} P\left(n_{\mathrm{tr}}\right)=1 \tag{6}
\end{equation*}
$$

where n is the number of united atoms per chain molecule ($n=20$ in this work). The distribution $P\left(n_{\mathrm{tr}}\right)$ is shown in Fig. 5 at various times for $T=400 \mathrm{~K}$. At $t=0 \mathrm{ps}, P\left(n_{\mathrm{tr}}\right)$ decreases with the increase of the size n_{tr} and almost all the trans segments are small: $P\left(n_{\mathrm{tr}}>10\right) \approx 0$. With the elapse of time, the fraction of the trans segments with large $n_{\text {tr }}$ increases while that with small $n_{\text {tr }}$ decreases $(t=10,20$, and $100 \mathrm{ps})$. At $t=200 \mathrm{ps}$, the fraction of the trans segments with $n_{\mathrm{tr}} \leqslant 16$ becomes small and $P\left(n_{\mathrm{tr}}=17\right)$, which means alltrans conformation, reaches about 0.4. At $t=2000 \mathrm{ps}$, the distribution $P\left(n_{\mathrm{tr}}=17\right)$ exceeds 0.7 , which indicates that most chain molecules are in the all-trans conformation. We show, in Fig. 6, the average size of the trans segments, $\overline{n_{\mathrm{tr}}}$, which is defined by

$$
\begin{equation*}
\overline{n_{\mathrm{tr}}}=\sum_{n_{\mathrm{tr}}=1}^{n-3} n_{\mathrm{tr}} P\left(n_{\mathrm{tr}}\right) \tag{7}
\end{equation*}
$$

and satisfies $1 \leqslant \overline{n_{\mathrm{tr}}} \leqslant n-3(=\underline{17})$, as a function of time at $T=400 \mathrm{~K}$. The average size $\overline{n_{\mathrm{tr}}}$ starts to increase sharply at $t \approx 70 \mathrm{ps}$ and becomes almost constant after $t \approx 350 \mathrm{ps}$. By making a comparison between the time evolution of $P_{\text {trans }}$ (Fig. 4) and that of $\overline{n_{t r}}$ (Fig. 6), it is clearly found that at first the transition from the gauche state to the trans state takes

FIG. 5. The distribution of the size of the trans segments $P\left(n_{\mathrm{tr}}\right)$ for T $=400 \mathrm{~K}$ at various times: (a) 0 ps , (b) 10 ps , (c) 20 ps , (d) 100 ps , (e) 200 ps , and (f) 2000 ps .
place and after that the stretching of chain molecules starts to proceed. Judging from the fact that the chain molecules stretch in the duration when no global orientational order exists, it is concluded that growth of the intrachain orientational order, i.e., the stretching of chain molecules, starts to proceed prior to that of the interchain orientational order, i.e., parallel ordering. This is ascertained again in the later subsection (Sec. III B 3). Therefore we may say that parallel alignment of chain molecules is triggered off by the stretching of them. This finding is also observed in experiments of long chain molecules such as polyethylene ${ }^{3-5}$ and poly(ethylene terephthalate). ${ }^{6-9}$

2. Spatial distribution of gauche bonds

In this subsection, we nstudy the spatial distribution of gauche bonds $(|\phi|>\pi / 3)$. Before discussing the spatial distribution of gauche bonds, we calculate the number of iso-

FIG. 6. The average size of the trans segments $\overline{n_{\text {tr }}}$ vs time t at $T=400 \mathrm{~K}$. The dashed line represents the upper limit of $\overline{n_{\mathrm{tr}}}$.

TABLE II. The average number of gauche bonds n_{G}, isolated gauche bonds n_{IG}, and their ratio $n_{\mathrm{IG}} / n_{\mathrm{G}}$ in each time interval at $T=400 \mathrm{~K}$.

Time (ps)	n_{G}	$n_{\text {IG }}$	$n_{\text {IG }} / n_{\mathrm{G}}$
$0 \sim 500$	73.87	25.39	0.344
$500 \sim 1000$	29.23	17.92	0.613
$1000 \sim 1500$	25.37	16.64	0.656
$1500 \sim 2000$	23.76	15.92	0.670

lated gauche bonds. The isolated gauche bond can be defined as the only gauche bond that a chain molecule possesses. The average number of gauche bonds n_{G}, isolated gauche bonds n_{IG}, and their ratio $n_{\mathrm{IG}} / n_{\mathrm{G}}$ for several time intervals are shown in Table II at $T=400 \mathrm{~K}$. In the initial time region ($t=0 \sim 500 \mathrm{ps}$), about one-third of the gauche bonds are the isolated ones. As time elapses, the ratio $n_{\mathrm{IG}} / n_{\mathrm{G}}$ increases whereas the total number of gauche bonds n_{G} reduces. In the time region of $t=1500 \sim 2000 \mathrm{ps}$, the ratio of the isolated gauche bonds to the total gauche bonds reaches two-thirds, which indicates that most of the gauche bonds are isolated.

In order to investigate the intrachain spatial correlation of gauche bonds, we calculate the pair distribution function of gauche bonds $p(m)$, where m is the bond separation, that is, $m-1$ represents the number of bonds present between the gauche pairs. The pair distribution function $p(m)$ is normalized as

$$
\begin{equation*}
\sum_{m=1}^{n-4} p(m)=1 \tag{8}
\end{equation*}
$$

The gauche bonds can be classified as g^{+}or g^{-}according to whether $\phi>\pi / 3$ or $\phi<-\pi / 3$. The distribution $p(m)$ consists of two parts: the contribution from the gauche pairs with the same sign, $p_{+}(m)$, and that from the gauche pairs with the opposite sign, $p_{-}(m)$. The distribution $p(m)$ is then calculated by the sum of these two contributions: $p(m)$ $=p_{+}(m)+p_{-}(m)$. The pair distribution functions $p_{ \pm}(m)$ are shown in Fig. 7 at various times for $T=400 \mathrm{~K}$. In the initial time region ($t=0 \sim 50 \mathrm{ps}$), no clear distinction can be

FIG. 7. The pair distribution function $p_{ \pm}(m)$ vs bond separation m for T $=400 \mathrm{~K}$ at various time intervals: (a) $0 \sim 50 \mathrm{ps}$, (b) $200 \sim 250 \mathrm{ps}$, (c) $250 \sim 300 \mathrm{ps}$, and (d) $1950 \sim 2000 \mathrm{ps}$.

FIG. 8. The largest domain size s vs time t at $T=400 \mathrm{~K}$.
observed between $p_{+}(m)$ and $p_{-}(m)$, and both of them decrease monotonically with the increase of the bond separation m [Fig. 7(a)]. There is no appreciable difference between $p_{+}(m)$ and $p_{-}(m)$ also in the time region of $t=200$ $\sim 250 \mathrm{ps}$, but the contributions from $m=1$ and $m=2$ become prominent [Fig. 7(b)]. In the next time region (t $=250 \sim 300 \mathrm{ps})$, notable difference between $p_{+}(m)$ and $p_{-}(m)$ can be seen for $m=1$ and $m=2$ [Fig. 7(c)]. For m $=1$, the contribution from the gauche pairs with the same sign becomes marked. On the other hand, that from the gauche bonds with the opposite sign is dominant for $m=2$. In the time region of $t=1950 \sim 2000 \mathrm{ps}$, the contributions from $m=1$ and $m=2$ become more and more conspicuous and those from $m \geqslant 3, p_{ \pm}(m \geqslant 3)$, are all small [Fig. 7(d)]. This fact indicates that the gauche bonds tend to form small clusters. The fact that the contribution from the gauche bonds with the same sign is remarkable for $m=1$ is in a striking contrast to the MD simulation results of a polymethylene chain confined in cylindrical potentials by Yamamoto et al., where the contribution from $m=1$ is very small for the gauche bonds both with the same sign and with the opposite sign. ${ }^{32}$ They treated the system without free surfaces in their simulation. In our simulation, on the other hand, the system with free surfaces are dealt with. As we shall see later (Sec. III C 3), the contribution from the gauche bonds with the same sign for $m=1$ mainly stems from the bonds on the free surface, that is, the end bonds in the outermost shell.

3. Parallel ordering

We investigate, in this subsection, the parallel ordering process. We first introduce the concept of a 'domain'" as a bunch of local orientationally-ordered chain molecules which is formed through parallel ordering. ${ }^{20-22} \mathrm{~A}$ domain is defined in the following way. Two chain molecules belong to the same domain if the following two conditions are satisfied: (i) $\left|\mathbf{r}_{c}^{i}-\mathbf{r}_{c}^{j}\right|<r_{0}$, and (ii) $\alpha_{i j}<\alpha_{0}$, where \mathbf{r}_{c}^{i} is the position vector of the center-of-mass of the i th chain molecule and $\alpha_{i j}$, which satisfies $0 \leqslant \alpha_{i j} \leqslant \pi / 2$, is the angle between the principal axis with the smallest moment of inertia of the i th chain and that of the j th chain. In our calculations, we set $r_{0}=1.5 \sigma$ and $\alpha_{0}=10^{\circ}$. We show, in Fig. 8, the time evolution of the largest domain size s at $T=400 \mathrm{~K}$. Up to t $\approx 120 \mathrm{ps}$, only small domains whose sizes are smaller than 10 can be observed. The largest domain size s starts to increase sharply at $t \approx 120 \mathrm{ps}$ and grows in a stepwise fashion

FIG. 9. The 2D radial distribution function $g_{2 \mathrm{D}}(r)$ averaged between 1500 and 2000 ps at various temperatures: (a) $T=100 \mathrm{~K}$, (b) $T=200 \mathrm{~K}$, (c) T $=300 \mathrm{~K}$, and (d) $T=400 \mathrm{~K}$.
afterwards. A comparison made between the time evolution of $\overline{n_{\mathrm{tr}}}$ (Fig. 6) and that of s (Fig. 8) shows that parallel ordering of chain molecules starts to occur after the stretching of chain molecules proceeds to some extent.

C. Molecular mobility and conformational defects in the orientationally ordered structure

1. Orientationally ordered structure

Here, we study the orientationally ordered structure at various temperatures. With a view to investigating the manner of lateral packing, we first calculate the two-dimensional (2D) radial distribution function for the center-of-mass positions of chain molecules in the $a-b$ plane. The 2D radial distribution function $g_{2 \mathrm{D}}(r)$ averaged between 1500 and 2000 ps is shown in Fig. 9 at various temperatures. At T $\geqslant 200 \mathrm{~K}$, no remarkable difference can be found among the profiles of $g_{2 \mathrm{D}}(r)$. At $T=100 \mathrm{~K}$, the first peak splits into two peaks and an additional peak appears between the second and the third peaks. The reason for this is that the equivalence between the direction of the a axis and that of the b axis breaks down as a result of the transition from the hexagonal phase toward the orthorhombic phase. We then calculate the lattice constants at various temperatures from the simulation data of the center-of-mass positions of chain molecules between 1500 and 2000 ps. In Fig. 10, the lattice constants a, b, and their ratio a / b are plotted as a function of temperature. Figures 10(a) and 10(b) indicates that the parameter a decreases with the decrease of temperature while the parameter b stays almost constant compared with the variation of a in this temperature region. From Fig. 10(c), it

FIG. 10. Lattice constants (a) a, (b) b, and (c) the ratio a / b vs temperature T. A dashed line in (c) indicates the hexagonal value $\sqrt{3}$.
is found that chain molecules are packed hexagonally at T $=400 \mathrm{~K}$ as mentioned above (see Fig. 2). The ratio a / b decreases as the temperature decreases, which indicates that the change from the hexagonal phase toward the orthorhombic phase takes place as the temperature decreases.

2. Translational motion

In this subsection, we investigate the translational motion of chain molecules at various temperatures. In order to measure the extent of the translational motion, we define the average fluctuations along individual axes in each shell l as

$$
\begin{align*}
& \Delta a(l)=\left\{\sum_{m \in l-\text { th shell }} \frac{1}{n_{l}}\left\langle\left(a_{\mathrm{c}}^{m}-\left\langle a_{\mathrm{c}}^{m}\right\rangle\right)^{2}\right\rangle\right\}^{1 / 2}, \tag{9}\\
& \Delta b(l)=\left\{\sum_{m \in l-\text { th shell }} \frac{1}{n_{l}}\left\langle\left(b_{\mathrm{c}}^{m}-\left\langle b_{\mathrm{c}}^{m}\right\rangle\right)^{2}\right\rangle\right\}^{1 / 2}, \tag{10}\\
& \Delta c(l)=\left\{\sum_{m \in l-\text { th shell }} \frac{1}{n_{l}}\left\langle\left(c_{\mathrm{c}}^{m}-\left\langle c_{\mathrm{c}}^{m}\right\rangle\right)^{2}\right\rangle\right\}^{1 / 2}, \tag{11}
\end{align*}
$$

where $\mathbf{r}_{\mathrm{c}}^{m}=\left(a_{\mathrm{c}}^{m}, b_{\mathrm{c}}^{m}, c_{\mathrm{c}}^{m}\right)$ is the position vector of the center of mass of the m th chain molecule, n_{l} denotes the number of chain molecules involved in the l th shell, $\langle\cdots\rangle$ represents the time average between 1500 and 2000 ps , and the zeroth shell means the central chain. In Fig. 11, we show the average fluctuations $\Delta a, \Delta b$, and Δc as a function of the shell number l at various temperatures. This figure tells us that the longitudinal chain motion increases dramatically as the temperature increases [Fig. 11(c)] while the transverse chain motion is not so sensitive to the temperature variation [Figs.

FIG. 11. Average fluctuations (a) along the a axis Δa, (b) along the b axis Δb, and (c) along the c axis Δc vs shell number l at various temperatures. A dashed line in (c) indicates $c / 2$, where c is the equilibrium lattice constant along the c axis.

11(a) and $11(\mathrm{~b})]$. At $T=400 \mathrm{~K}$, the average longitudinal fluctuation Δc reaches about seven times the value of the average transverse fluctuation Δa or Δb. A dramatic increase in the longitudinal chain motion is also observed in the pseudohexagonal $\left(R_{\mathrm{I}}\right)$ rotator phase of the n-alkane tricosane by Ryckaert et al. ${ }^{33,34}$ It is also found that both the transverse fluctuation and the longitudinal fluctuation increase remarkably in the outer three shells $(l=4 \sim 6)$ while they stay almost constant in the inner shells ($l=0 \sim 3$). This result indicates that the chain molecules have much mobility in a few shells on the free surface. At $T \leqslant 300 \mathrm{~K}$, the average longitudinal fluctuation Δc in the inner shells is smaller than $c / 2\left(=d_{0} \cos \left(\theta_{0} / 2\right) \approx 0.125 \mathrm{~nm}\right)$, where c is the equilibrium lattice constant along the c axis. On the other hand, the fluctuation Δc becomes larger than $c / 2$ even in the inner shells at $T=400 \mathrm{~K}$. It is quite understandable that the chain molecules can easily move in the longitudinal direction when the average longitudinal fluctuation Δc exceeds $c / 2$. Considering that the chain molecules are packed hexagonally, we come to the conclusion that the chain molecules become longitudinally mobile in the case of hexagonal packing.

3. Conformational defects

As mentioned in Sec. III B 2 above, the contributions from the gauche pairs with the same sign for $m=1, p_{+}(1)$, and from those with the opposite sign for $m=2, p_{-}(2)$, are both remarkable. We here investigate what types of conformational defects contribute significantly to $p_{+}(1)$ and $p_{-}(2)$. Before calculating the fraction of several types of conformational defects which contribute to $p_{+}(1)$ and

TABLE III. Explanation of four types of conformational defects: double gauche, triple gauche, kink, and coupled kink. In the column of 'Example,' t and $\mathrm{g}^{ \pm}$denote the trans and the gauche states, respectively.

Type	Symbol	Example
Double gauche	DG1	$\cdots \operatorname{tg}^{+} \mathrm{g}^{+} \mathrm{t} \cdots, \cdots \operatorname{tg}^{-} \mathrm{g}^{-} \mathrm{t} \cdot$.
	DG2	$\cdots \mathrm{tg}^{+} \mathrm{g}^{-} \mathrm{t}$.
Triple gauche	TG1	$\cdots \operatorname{tg}^{+} \mathrm{g}^{+} \mathrm{g}^{+} \mathrm{t} \cdots, \cdots \mathrm{tg}^{-} \mathrm{g}^{-} \mathrm{g}^{-} \mathrm{t} \cdots$
	TG2	$\cdots \operatorname{tg}^{+} \mathrm{g}^{+} \mathrm{g}^{-} \mathrm{t} \cdots, \cdots \operatorname{tg}^{-} \mathrm{g}^{-} \mathrm{g}^{+} \mathrm{t} \cdots$
	TG3	$\cdots \operatorname{tg}^{+} \mathrm{g}^{-} \mathrm{g}^{+} \mathrm{t} \cdot \cdots, \cdots \operatorname{tg}^{-} \mathrm{g}^{+} \mathrm{g}^{-} \mathrm{t} \cdots$
Kink	K	$\cdots \operatorname{tg}^{+} \mathrm{tg}^{-} \mathrm{t} \cdot$
Coupled kink	CK	$\cdots \operatorname{tg}^{+} \operatorname{tg}^{-} \operatorname{tg}^{+} \mathrm{t} \cdot \cdots, \cdots \operatorname{tg}^{-} \mathrm{tg}^{+} \mathrm{tg}^{-} \mathrm{t} \cdot \cdot$

$p_{-}(2)$, we prescribe the types of conformational defects. We define the following four types of conformational defects: double gauche, triple gauche, kink, and coupled kink. Details of these conformational defects are explained in Table III. The symbols DG1 and DG2, respectively denote double gauche defects composed of the gauche pairs with the same sign and with the opposite sign. Triple gauche defects are classified into three groups: TG1, TG2, and TG3. Among these conformational defects, DG1, TG1, and TG2 contribute to $p_{+}(1)$ and TG2, K, and CK to $p_{-}(2)$. We show, in Fig. 12, the average fraction of the conformational defects between 1500 and 2000 ps which contribute to $p_{+}(1)$ and $p_{-}(2)$ at $T=400 \mathrm{~K}$. This figure tells us that the gauche pairs with the same sign tend to form the double gauche defects (DG1) and those with the opposite sign tend to form the kink defects (K). The latter result is also observed in the abovementioned MD simulation by Yamamoto et al. ${ }^{32}$

We then study the spatial distribution of the double gauche defects (DG1) and the kink defects (K). The spatial distribution function $P\left(n_{\mathrm{D}}, l\right)$ is normalized as

$$
\begin{equation*}
\sum_{n_{\mathrm{D}}=1}^{n_{\mathrm{D}}^{\text {max }}} \sum_{l=0}^{l_{\text {max }}} \frac{1}{n_{l}} P\left(n_{\mathrm{D}}, l\right)=1, \tag{12}
\end{equation*}
$$

where n_{D} denotes the defect number along the chain molecule, $l_{\max }$ represents the maximum shell number ($l_{\max }=6$ in

FIG. 12. The fraction of the conformational defects averaged between 1500 and 2000 ps which contribute (a) to $p_{+}(1)$ and (b) to $p_{-}(2)$ at $T=400 \mathrm{~K}$. Symbols such as DG1 and TG1 are explained in Table III.

FIG. 13. The average spatial distribution function $P\left(n_{\mathrm{D}}, l\right)$ between 1500 and 2000 ps as a function of n_{D} and l (a) for DG1 and (b) for K at T $=400 \mathrm{~K}$.
our case), and $n_{\mathrm{D}}^{\max }$ is the maximum defect number ($n_{\mathrm{D}}^{\max }$ $=16$ for DG1, and $n_{\mathrm{D}}^{\max }=15$ for K). Note that the conformational defects with $n_{\mathrm{D}}=1$ and $n_{\mathrm{D}}=n_{\mathrm{D}}^{\max }$ correspond to the end defects. The spatial distribution function $P\left(n_{\mathrm{D}}, l\right)$ averaged between 1500 and 2000 ps is shown in Fig. 13 as a function of n_{D} and l for DG1, and K at $T=400 \mathrm{~K}$. It is found from Fig. 13(a) that the double gauche defects (DG1) are predominantly located at the chain ends in the outermost shell. This can be understood in the following way. When the double gauche defects (DG1) are located in the chain interiors, chain molecules are prevented from packing laterally because of large deformation of chain molecules. Thus the energy loss due to the double gauche defects (DG1) located in the chain interiors becomes large. When the defects are located in the outermost shell, the energy loss due to the appearance of the defects (DG1) is considered to be small since the outermost shell is a free surface where the constraint by surrounding chain molecules is weak. Therefore the double gauche defects (DG1) tend to locate at the chain ends in the outermost shell. Figure 13(b) tells us that most of the kink defects are located in the outermost shell. In contrast to the double gauche defects (DG1), the kink defects does not give rise to serious deformation of chain molecules even in the chain interiors. Therefore the energy loss is small even though the kink defects are located in the chain interiors.

IV. SUMMARY AND DISCUSSION

In this paper, we have carried out MD simulations of short chain-molecule systems with free surfaces. By analyzing the microscopic processes of the structure formation and investigating the molecular mobility and the conformational defects in the obtained orientationally-ordered structure, the following results have been obtained:
(i) The orientationally ordered structure is formed at low temperature from a random configuration at high temperature by quenching.
(ii) The global orientational order sharply starts to grow after a certain initial duration.
(iii) The fraction of the trans states increases even in the initial duration when no global orientational order exists.
(iv) The stretching of chain molecules starts to proceed before the parallel ordering starts to occur.
(v) Both the largest domain size and the global orientational order grow in a stepwise fashion.
(vi) The chain molecules are packed hexagonally at T $=400 \mathrm{~K}$. The transition from the hexagonal phase toward the orthorhombic phase takes place as the temperature decreases.
(vii) The longitudinal chain motion increases dramatically as the temperature increases. The chain molecules in a few shells on the free surface have much mobility. In the hexagonal phase, the average longitudinal fluctuation Δc becomes larger than $c / 2$ even in the inner shells, which means that the chain molecules become longitudinally mobile in the case of hexagonal packing.
(viii) The gauche bonds in the same chain molecule tend to form gauche pairs. The gauche pairs with the same sign form the double gauche defects and those with the opposite sign form the kink defects. The double gauche defects with the same sign are predominantly located at the chain ends in the outermost shell and most of the kink defects are located in the outermost shell.

Our conclusion that the chain molecules become longitudinally mobile in the hexagonal phase is drawn by the microscopic analysis of the chain motion. Therefore this conclusion is the microscopic evidence to confirm the existence of the chain sliding diffusion in the hexagonal phase which underlies the sliding diffusion theory of polymer crystallization proposed by Hikosaka. ${ }^{35,36}$ The chain sliding diffusion is the sliding motion along the chain axes of chain molecules within crystals or nuclei, or crystal/melt interfaces. Since the chain sliding diffusion occurs readily in the hexagonal phase, extended chain crystals are formed through the lamellar thickening growth. On the other hand, folded chain crystals are formed in the orthorhombic phase because the chain sliding diffusion is hindered and accordingly the lamellar thickening growth is suppressed.

In our simulation, the orientationally-ordered structure is formed at the temperature above the bulk freezing point of $n-\mathrm{C}_{20} \mathrm{H}_{42}\left(T_{f} \approx 38^{\circ} \mathrm{C}\right)$. This observation is similar to the surface freezing phenomenon which is observed on the free surface of liquid n-alkanes a few degrees above their freezing temperatures. There are several reasons why the ordered structure is formed far above the freezing temperature in our simulation. One is that the obtained structure is a monolayer structure. Another reason is that the torsional energy difference between the trans and the gauche states in the DREIDING potential is larger than that in the real n-alkanes.

It may be worth mentioning here as to whether the ordered system is a crystal or a liquid crystal. At $T<400 \mathrm{~K}$, the ordered system can be a crystal since the molecular mobility is small. At $T=400 \mathrm{~K}$, however, it may be a nematic liquid crystal since the longitudinal mobility becomes rela-
tively large and the layer structure breaks down.
Molecular dynamics simulations of long chain molecules are under way in order to investigate the effect of the entanglement on the structure formation.

ACKNOWLEDGMENTS

This work was partially supported by a Grant-in-Aid (No. 10044105, No. 10740199, and No. 10898016) and a Grant-in-Aid for Scientific Research on Priority Areas, Cooperative Phenomena in Complex Liquids, from the Ministry of Education, Science, Sports and Culture. This work was carried out by using the Advanced Computing System for Complexity Simulation (NEC SX-3/24R) at National Institute for Fusion Science.
${ }^{1}$ M. Hikosaka, S. Rastogi, A. Keller, and H. Kawabata, J. Macromol. Sci., Phys. B31, 87 (1992), and references therein.
${ }^{2}$ A. Keller, M. Hikosaka, S. Rastogi, A. Toda, P. J. Barham, and G. Goldbeck-Wood, J. Mater. Sci. 29, 2579 (1994).
${ }^{3}$ K. Tashiro, M. Izuchi, F. Kaneuchi, C. Jin, M. Kobayashi, and R. S. Stein, Macromolecules 27, 1240 (1994).
${ }^{4}$ K. Tashiro, K. Imanishi, Y. Izumi, M. Kobayashi, K. Kobayashi, M. Satoh, and R. S. Stein, Macromolecules 28, 8477 (1995).
${ }^{5}$ K. Tashiro, S. Sasaki, and M. Kobayashi, Macromolecules 29, 7460 (1996).
${ }^{6}$ M. Imai, K. Kaji, and T. Kanaya, Phys. Rev. Lett. 71, 4162 (1993).
${ }^{7}$ M. Imai, K. Kaji, and T. Kanaya, Macromolecules 27, 7103 (1994).
${ }^{8}$ M. Imai, K. Kaji, T. Kanaya, and Y. Sakai, Physica B 213/214, 718 (1995).
${ }^{9}$ M. Imai, K. Kaji, T. Kanaya, and Y. Sakai, Phys. Rev. B 52, 12696 (1995).
${ }^{10}$ K. Fukao and Y. Miyamoto, Phys. Rev. Lett. 79, 4613 (1997).
${ }^{11}$ K. Fukao and Y. Miyamoto, J. High Temp. Chem. Processes 212, 208 (1997).
${ }^{12}$ J. C. Earnshaw and C. J. Hughes, Phys. Rev. A 46, R4494 (1992).
${ }^{13}$ X. Z. Wu, E. B. Sirota, S. K. Sinha, B. M. Ocko, and M. Deutsch, Phys. Rev. Lett. 70, 958 (1993).
${ }^{14}$ X. Z. Wu, B. M. Ocko, E. B. Sirota, S. K. Sinha, M. Deutsch, B. H. Cao, and M. W. Kim, Science 261, 1018 (1993).
${ }^{15}$ X. Z. Wu, B. M. Ocko, H. Tang, E. B. Sirota, S. K. Sinha, and M. Deutsch, Phys. Rev. Lett. 75, 132 (1995).
${ }^{16}$ M. Deutsch, X. Z. Wu, E. B. Sirota, S. K. Sinha, B. M. Ocko, and O. M. Magnussen, Europhys. Lett. 30, 283 (1995).
${ }^{17}$ T. A. Kavassalis and P. R. Sundararajan, Macromolecules 26, 4144 (1993).
${ }^{18}$ P. R. Sundararajan and T. A. Kavassalis, J. Chem. Soc., Faraday Trans. 91, 2541 (1995).
${ }^{19}$ S. Fujiwara and T. Sato, J. Chem. Phys. 107, 613 (1997).
${ }^{20}$ K. Esselink, P. A. J. Hilbers, and B. W. H. van Beest, J. Chem. Phys. 101, 9033 (1994).
${ }^{21}$ S. Fujiwara and T. Sato, Phys. Rev. Lett. 80, 991 (1998).
${ }^{22}$ S. Fujiwara and T. Sato, Mol. Simul. 21, 271 (1999).
${ }^{23}$ H. Takeuchi, J. Chem. Phys. 109, 5614 (1998).
${ }^{24}$ M. Kawamata and T. Yamamoto, J. Phys. Soc. Jpn. 66, 2350 (1997).
${ }^{25}$ T. Yamamoto, J. Chem. Phys. 107, 2653 (1997).
${ }^{26}$ T. Yamamoto, J. Chem. Phys. 109, 4638 (1998).
${ }^{27}$ S. L. Mayo, B. D. Olafson, and W. A. Goddard III, J. Phys. Chem. 94, 8897 (1990).
${ }^{28}$ L. Verlet, Phys. Rev. 159, 98 (1967).
${ }^{29}$ S. Nosé, Mol. Phys. 52, 255 (1984).
${ }^{30}$ S. Nosé, J. Chem. Phys. 81, 511 (1984).
${ }^{31}$ W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
${ }^{32}$ T. Yamamoto and Y. Kimikawa, J. Chem. Phys. 97, 5163 (1992).
${ }^{33}$ J. P. Ryckaert, M. L. Klein, and I. R. McDonald, Phys. Rev. Lett. 58, 698 (1987).
${ }^{34}$ J. P. Ryckaert, I. R. McDonald, and M. L. Klein, Mol. Phys. 67, 957 (1989).
${ }^{35}$ M. Hikosaka, Polymer 28, 1257 (1987).
${ }^{36}$ M. Hikosaka, Polymer 31, 458 (1990).

